Application of Animal Models for Human Glucuronidation

Shujuan Chen

Tukey Laboratory

Departments of Chemistry & Biochemistry and Pharmacology, UCSD

2012 SCDMDG

Bilirubin Clearance

Neonatal Hyperbilirubinemia

Jaundice

Light Therapy

Kernicterus

Tg-UGT1 Mice

Chen S, et al. JBC, 2005

Ugt1^{-/-} Mice

Nguyen N, et al. JBC, 2008

Longevity of Ugt1-/- Mice

Ugt1+/-

Ugt1-/-

Generation of Humanized UGT1 Mice

Humanized *UGT1* Mice as a Model for Hyperbilirubinemia and Brain Toxicity

7-day *Ugt1*+/-

15-day *hUGT1*

Normal Kernicterus

7-day *Ugt1^{-/-}*

15-day *hUGT1*

TSB Levels in *Ugt1-null* and Humanized *UGT1* Mice

Days after birth

Fujiwara R, et al. PNAS, 2010

NRs Agonists v.s. Bilirubin Levels

Generation of *hUGT1* Mice with *NR-null* background

hUGT1 Mice with Pxr-null and/or Car-null

Chen S, et al. Hepatology, 2012

Neonatal *hUGT1* Hepatocyte Treated with siPXR

ChIP Assay

Hypothesis of PXR Repression & De-repression

Repressive Histone Methylation Marks

Active Histone Methylation Marks

UGT1A1 Gene Expression v.s. siRNA

Conclusions

- 1. Humanized *UGT1* mice develop neonatal hyperbilirubinemia and serve as a model for brain toxicity.
- 2. Humanized *UGT1* mice are subject to regulation by nuclear receptor agonists.
- 3. Deletion of the *Pxr* gene, but not the *Car* gene, lowers serum bilirubin in *hUGT1* mice.
- 4. PXR binds to the *UGT1A1* promoter, and the genetic deletion of *Pxr* leads to the upregulation of *UGT1A1* in *hUGT1/Pxr^{/-}* mice.

Irinotecan Metabolism and Toxicities

Target Constructs

Conditional Deletion of the Ugt1 Locus

Hepatocytes deletion (Alb-Cre)

Ugt1^{F/F} Ugt1^{∆HEP}

Intestinal Deletion (Vil-Cre)

AHep v.s. A GI__Survival

AHep v.s. A GI___Weight Loss

CPT-11_75 mg/kg

CPT-11_50 mg/kg

Irinotecan-induced Intestinal Toxicity

Summary

- 1. Tissue specific *Ugt1* deletion were generated by adopting *Cre/loxP* recombination system.
- 2. Extrahepatic clearance of bilirubin occurs in the absence of functional hepatic *Ugt1a1*.
- 3. Intestinal Ugt1a1 plays an important role in preventing CPT-11 induced toxicity.

Acknowledgements

Dr. Robert Tukey

Dr. Mei-Fei Yueh Dr. Ryoichi Fujiwara Camille Konopnicki Nghia Nguyen Deirdre Beaton-La Placa Autumn Bonner

Collaborations:

Dr. Ronald Evans Salk Institute, San Diego

Dr. Masahiko Negishi NIEHS, North Carolina

Dr. Michael Karin University of California, San Diego

Dr. Dora Brites University of Lisbon, Portugal

Pfizer

Dr. Jeffrey Stevens Dr. Hongliang Cai Dr. Michael Zientek Ying Jiang

Bilirubin Transport and Metabolism in Hepatocytes

Ugt1 gene locus and targeting constructs

