Mechanism-Based Inactivation of Human Cytochrome P450s

Paul F. Hollenberg

Department of Pharmacology

P450 Substrate Hydroxylation

Terminology:

- suicide inactivator
- enzyme-activated irreversible inhibitor
- time-dependent inhibitor
- Definition: A substrate that in the process of catalytic turnover is metabolized to a reactive intermediate which inactivates the enzyme.

Enzyme substrates

Require all coenzymes and substrates

Activity loss is first-order with enzyme

- **Exhibit saturation kinetics**
- Inactivation is stoichiometric
- GSH and DDT do not protect against inactivation

Inactivation is irreversible

Three Pathways for Mechanism-Based Inactivation

Information that Can be Obtained with Mechanism-Based Inactivators:

Structural Studies

- a) Site of adduct binding:
 - heme
 - protein
 - i.d. adducted peptide
 - i.d. adducted amino acid
- b) site-directed mutagenesis

Mechanistic Studies

a) Identify the step(s) in the
 P450 reaction that are
 compromised and result in
 the loss in activity

Method

Proposed Mechanism for Diaziridine Oxidation

 \equiv

Structures of Substituted Aryl Diaziridines

 \equiv

Inactivation of P450 2B6 by the Substituted Aryl Diaziridines

 \equiv

Activity Loss (% of Control)		
Substitution	P450 2B6	
4-methoxy (1)	65 %	
4-ethoxy(2)	62 %	
3,4-dimethoxy(3)	70 %	
3-methyl,4-methoxy (4)	70%	
3,4,5-trimethoxy (5)	70 %	
4-methylthio (6)	No loss	

No inactivation was observed with P450s 2C9, 2D6, 2E1, or 3A4

Time- and Concentration Dependent Inactivation of P450 2B6 by 3-(Trifluoromethyl)-4-methoxy(3-methylphenyl)diaziridine

 $\overline{=}$

Kinetic Parameters for Inactivation of P450 2B6 by the Substituted Aryl Diaziridines

 \equiv

Substituted aryl diaziridine	Κ _ι μΜ	k _{inact} min⁻¹	t _{1/2} min
4-methoxy (1)	7.1 ± 1.9	0.042	16.5
4-ethoxy (2)	2 ± 0.7	0.079	8.8
3,4-dimethoxy (3)	2.5 ± 1.2	0.06	11.4
3-methyl,4-methoxy (4)	1.7 ± 0.2	0.066	10.5
3,4,5-trimethoxy (5)	$\textbf{2.7} \pm \textbf{0.9}$	0.05	14
4-methylthio (6)		No inactivation	

Partition Ratios for the Inactivation of P450 2B6 by the Substituted Aryl Diaziridines

 \square

Substituted aryl diaziridine	4-methoxy (1)	4-ethoxy (2)	3,4- dimethoxy (3)	3-methyl,4- methoxy (4)	3,4,5- trimethoxy (5)
Partition Ratio	41	62	9.6	29	45

Other Properties for the Inactivation of P450 2B6 by the Substituted Aryl Diaziridiens

- Addition of reductase to the inactivated protein does not lead to recovery of activity
- Inactivation is irreversible
- There is no significant heme modification
- ✤ 10 mM GSH does not protect against inactivation

Structures of the Aryl Diazidirines

D

D´

H₃C[^]

 $\overline{=}$

Metabolic Stability of the Aryl Diaziridines

 $\overline{\mathbb{P}}$

GC-MS Spectrum of the Metabolite of Aryl Diaziridine 1 (a) and its Ketone Standard (b)

 $\overline{=}$

Metabolism of an Aryl Diaziridine to a Ketone

LC-MS/MS Analysis of GSHEE Adducts of Aryl Diaziridine 1

 $\overline{=}$

Proposed Chemical Structures for the GSHEE-Adducts formed by P450 2B6

LC-MS/MS Analysis of GSHEE Adducts of Aryl Diaziridine 11

 $\overline{=}$

Proposed Mechanism for the Inactivation of P450 2B6 by Aryl Diaziridines 1-5

Pathway for the Metabolism of Compound 6 without Formation of a Reactive Intermediate

An Alternative Mechanism for the Inactivation of P450 2B6 by Aryl Diaziridines

 $\overline{\mathbb{P}}$

P450 2B6 and 4-hydroxy phenyl diaziridine

Km = 4.4μ M and Vmax = 0.02

4-*tert*-butylphenylacetylene (BPA) MW = 158 g/mol

Inactivator	P450	K _I	k _{inact}	$k_{ m inact}$ / $K_{ m I}$	Partition ratio
		μΜ	min ⁻¹	min ⁻¹ mM ⁻¹	
BPA	WT	0.7	1.64	2343	1
	T205A	16	0.36	23	9
BMP	WT	17	0.56	33	10
	T205A	16	0.14	9	35

482 Da – 308 Da = 174 Da

SEQUEST database search results

Modified peptide positions and sequence	Modified residue	Precursor ion charge	XCorr	Probability
²⁹⁶ FFAGTETSSTTLR ³⁰⁸	Thr302	2	3.62	1.7 x 10 ⁻⁶
²⁹⁶ FFAGTETSSTTLR ³⁰⁸	Ser303	2	3.48	1.1 x 10 ⁻⁴
¹⁰⁰ TIAVIEPIFK ¹⁰⁹	Thr100	2	2.90	8.0 x 10 ⁻⁵

Xcorr: cross-correlation value between the observed peptide fragment mass spectrum and the one theoretically predicted.

Probability: scoring algorithm in BioWorks based on the probability that the peptide is a random match to the spectral data

m/z

Reversible Docking of BPA in the CYP2B1 Active Site

Modified residue	location	Distance to heme iron (Å) ^a	Distance to BPA (Å) ^a	Distance to testosterone (Å) ^a
Thr100	B' helix/loop	15.44	8.31	6.94
Thr302	I-helix	6.22	3.42	2.42
Ser303	I-helix	8.57	7.67	7.18

^aDistance between the nearest atom of each residue and the heme iron, BPA, and testosterone based on CYP2B1 homology modeling.

Time- and Concentration Dependent Inactivation of P450 2B4 by *tert*-butylphenylacetylene

 $\overline{\mathbb{P}}$

Partition Ratio for Mechanism-based Inactivation of P450 2B4 by *tert*-butylphenylacetylene

 $\overline{\mathbb{P}}$

P450 2B4-tBPA Adduct Formation as Revealed by LC-MS Analysis

 \equiv

UV-visible Spectra of tBPA-modified P450 2B4

 $\overline{\mathbb{P}}$

Catalytic Activity of tBPA-modified P450 2B4

Substrates	Relative Turnover Rates (% of unmodified 2B4)
7-EFC	30
BNZ	21
Testosterone	9.6

Compounds	Volume (ų)
tBPA	198.7
7-EFC	226.6
BNZ	289.1
Testosterone	313.9

Rates of Electron Transfer from P450 Reductase to tBPA-modified Ferric P450 2B4

P450 2B4 + BNZ

 $\overline{=}$

••• Modified P450 2B4 P450 2B4 + BNZ modified

Peptide Mapping to Identify Site of Covalent Binding

 $\overline{=}$

Molecular Modeling Showing the Binding of tBPA in the Active Site of P450 2B4

 $\overline{\mathbb{P}}$

Proposed Mechanism for Mechanism-based Inactivation of P450 2B4 by *tert*-butylphenylacetylene

Acknowledgements

- Hsia-lien Lin
- Ute M Kent
- Yoshimasa Kobayashi
- Chitra Sridar
- John M Rimoldi
- Satish G Puppali
- Haoming Zhang
- Lucy Waskell
- Daiichi Pharmaceutical Co., Ltd.
- NIH CA 16954

